Skip to main content

What are Abstract Methods and Classes


Abstract Methods and Classes : An abstract class is a class that is declared abstract—it may or may not include abstract methods. Abstract classes cannot be instantiated, but they can be subclassed. An abstract method is a method that is declared without an implementation (without braces, and followed by a semicolon), like this : abstract void moveTo(double deltaX, double deltaY); If a class includes abstract methods, the class itself must be declared abstract, as in: public abstract class GraphicObject { // declare fields // declare non-abstract methods abstract void draw(); } When an abstract class is subclassed, the subclass usually provides implementations for all of the abstract methods in its parent class. However, if it does not, the subclass must also be declared abstract. When an Abstract Class Implements an Interface : A class that implements an interface must implement all of the interface's methods. It is possible, however, to define a class that does not implement all of the interface methods, provided that the class is declared to be abstract.



For example,

abstract class X implements Y { // implements all but one method of Y } class XX extends X { // implements the remaining method in Y } In this case, class X must be abstract because it does not fully implement Y, but class XX does, in fact, implement Y. Class Members : An abstract class may have static fields and static methods. You can use these static members with a class reference—for example, AbstractClass.staticMethod()—as you would with any other class.

Popular posts from this blog

C++ Program to find the sum, difference, product and quotient of two integers

#include <iostream.h> #include <conio.h> void main() {   clrscr();   int x = 10;   int y = 2;   int sum, difference, product, quotient;   sum = x + y;   difference = x - y;   product = x * y;   quotient = x / y;   cout << "The sum of " << x << " & " << y << " is " << sum << "." << endl;   cout << "The difference of " << x << " & " << "y <<  is " << difference << "." << endl;   cout << "The product of " << x << " & " << y << " is " << product << "." << endl;   cout << "The quotient of " << x << " & " << y << " is " << quotient << "." << endl;   getch(); }

Program of virtual piano

//////////////Tested And Created By C++/////////////////////////////// #include<stdio.h> #include<dos.h> #include<conio.h> #include<stdlib.h> #define SHOW 1 #define HIDE 2 union REGS input,output; class piano {  public:int BIGKEY,MIDKEY,back,border;     piano()//init constructor     {         BIGKEY=15;         MIDKEY=1;         back=7;         border=15;     } }color; void drawpiano(int x,int y); int check_xy(int x,int y); void BOX(int c,int r,int c1,int r1,int col); int initmouse(); void setupscreen(); void pointer(int on); void restrictmouse(int x1,int y1,int x2,int y2); void check_keys(int x,int y); void getmouse(int *button,int *x,int *y); float freq[7] = {130.81, 146.83, 164.81, 174.61,196, 220, 246.94 } ; int n=0,a=4,backcolor=2,exitcode=1; void showbar(int t) {  if(t>65) t=65;  if(t<1) t=1;  textcolor(15);  for(int q=0;q<=t;t++)  {     gotoxy(3+q,4);     cprintf("Û");  } } void main() {  int

Putimage function in c

putimage function outputs a bit image onto the screen. Declaration:- void putimage(int left, int top, void *ptr, int op); putimage puts the bit image previously saved with getimage back onto the screen, with the upper left corner of the image placed at (left, top). ptr points to the area in memory where the source image is stored. The op argument specifies a operator that controls how the color for each destination pixel on screen is computed, based on pixel already on screen and the corresponding source pixel in memory. c smiling face animation This animation using c draws a smiling face which appears at random position on screen. See output below the code, it will help you in understanding the code easily. C programming code #include<graphics.h> #include<conio.h> #include<stdlib.h>   main() { int gd = DETECT, gm, area, temp1, temp2, left = 25, top = 75; void *p;   initgraph(&gd,&gm,"C:\\TC\\BGI");   setcolor(YELLOW);