Skip to main content

Packages and Interfaces


Packages


Many times when we get a chance to work on a small project, one thing we intend to do is to put all java files into one single directory. It is quick, easy and harmless. However if our small project gets bigger, and the number of files is increasing, putting all these files into the same directory would be a problematic for us. In java we can avoid this sort of problem by using Packages. Packages are nothing more than the way we organize files into different directories according to their functionality, usability as well as category they should belong to. Packaging also help us to avoid class name collision when we use the same class name as that of others. For example, if we have a class name called "Vector", its name would crash with the Vector class from JDK. However, this never happens because JDK use java.util as a package name for the Vector class (java.util.Vector). So our Vector class can be named as "Vector" or we can put it into another package like com.mycompany.Vector without fighting with anyone. The benefits of using package reflect the ease of maintenance, organization, and increase collaboration among developers.

How to create a Package : Suppose we have a file called HelloWorld.java, and we want to put this file in a package world. First thing we have to do is to specify the keyword package with the name of the package we want to use(world in our case) on top of our source file, before the code that defines the real classes in the package, as shown in our HelloWorld class below : package world; public class HelloWorld { public static void main(String[] args) { System.out.println("Hello World"); } } One thing you must do after creating a package for the class is to create nested subdirectories to represent package hierachy of the class. In our case, we have the world package, which requires only one directory. So, we create a directory world and put our HelloWorld.java into it.

Interfaces

 Interfaces have another very important role in the Java programming language. Interfaces are not part of the class hierarchy, although they work in combination with classes. The Java programming language does not permit multiple inheritance (inheritance is discussed later in this lesson), but interfaces provide an alternative. In Java, a class can inherit from only one class but it can implement more than one interface. Therefore, objects can have multiple types: the type of their own class and the types of all the interfaces that they implement. This means that if a variable is declared to be the type of an interface, its value can reference any object that is instantiated from any class that implements the interface.

Popular posts from this blog

C++ Program to find the sum, difference, product and quotient of two integers

#include <iostream.h> #include <conio.h> void main() {   clrscr();   int x = 10;   int y = 2;   int sum, difference, product, quotient;   sum = x + y;   difference = x - y;   product = x * y;   quotient = x / y;   cout << "The sum of " << x << " & " << y << " is " << sum << "." << endl;   cout << "The difference of " << x << " & " << "y <<  is " << difference << "." << endl;   cout << "The product of " << x << " & " << y << " is " << product << "." << endl;   cout << "The quotient of " << x << " & " << y << " is " << quotient << "." << endl;   getch(); }

Putimage function in c

putimage function outputs a bit image onto the screen. Declaration:- void putimage(int left, int top, void *ptr, int op); putimage puts the bit image previously saved with getimage back onto the screen, with the upper left corner of the image placed at (left, top). ptr points to the area in memory where the source image is stored. The op argument specifies a operator that controls how the color for each destination pixel on screen is computed, based on pixel already on screen and the corresponding source pixel in memory. c smiling face animation This animation using c draws a smiling face which appears at random position on screen. See output below the code, it will help you in understanding the code easily. C programming code #include<graphics.h> #include<conio.h> #include<stdlib.h>   main() { int gd = DETECT, gm, area, temp1, temp2, left = 25, top = 75; void *p;   initgraph(&gd,&gm,"C:\\TC\\BGI");   setcolor(YELLOW)...

What is Dynamic Memory Allocation in C++ Program

In the computer world, anything that is processed be it an instruction or any data first needs to be loaded and located in internal memory.  In C++ programs also any data that is processed while executing the program is held in the internal memory.  What is Dynamic Memory Allocation? Dynamic Memory allocation means that the memory that will be used during the program is not known beforehand and is allocated dynamically and on the go. It is allocated during the runtime as and when required by the program. In C++ there are two operators used in dynamic memory allocation  1. New  2. Delete New operator in dynamic memory allocation The new operator in C++ is used to create objects of all types. The new operator will allocate memory of the size of the data type specified in the program.  For Example iptr = new int ;  Storing initial values will allocate needed amount of memory from the free store to hold the value of the specified data-type and store the startin...