Skip to main content

Elaborating JVM


Java Virtual Machine : A Java Virtual Machine (JVM) is a set of computer software programs and data structures which use a virtual machine model for the execution of other computer programs and scripts. The model used by a JVM accepts a form of computer intermediate language commonly referred to as Java bytecode. This language conceptually represents the instruction set of a stack-oriented, capability architecture.
Java Virtual Machines operate on Java bytecode, which is normally (but not necessarily) generated from Java source code; a JVM can also be used to implement programming languages other than Java. For example, Ada source code can be compiled to Java bytecode, which may then be executed by a JVM. JVMs can also be released by other companies besides Sun (the developer of Java) -- JVMs using the "Java" trademark may be developed by other companies as long as they adhere to the JVM specification published by Sun (and related contractual obligations).



The JVM is a crucial component of the Java Platform. Because JVMs are available for many hardware and software platforms, Java can be both middleware and a platform in its own right — hence the expression "write once, run anywhere." The use of the same bytecode for all platforms allows Java to be described as "compile once, run anywhere", as opposed to "write once, compile anywhere", which describes cross-platform compiled languages. The JVM also enables such unique features as Automated Exception Handling which provides 'root-cause' debugging information for every software error (exception) independent of the source code.

The JVM is distributed along with a set of standard class libraries which implement the Java API (Application Programming Interface). The virtual machine and API have to be consistent with each other and are therefore bundled together as the Java Runtime Environment.

Popular posts from this blog

C++ Program to find the sum, difference, product and quotient of two integers

#include <iostream.h> #include <conio.h> void main() {   clrscr();   int x = 10;   int y = 2;   int sum, difference, product, quotient;   sum = x + y;   difference = x - y;   product = x * y;   quotient = x / y;   cout << "The sum of " << x << " & " << y << " is " << sum << "." << endl;   cout << "The difference of " << x << " & " << "y <<  is " << difference << "." << endl;   cout << "The product of " << x << " & " << y << " is " << product << "." << endl;   cout << "The quotient of " << x << " & " << y << " is " << quotient << "." << endl;   getch(); }

Putimage function in c

putimage function outputs a bit image onto the screen. Declaration:- void putimage(int left, int top, void *ptr, int op); putimage puts the bit image previously saved with getimage back onto the screen, with the upper left corner of the image placed at (left, top). ptr points to the area in memory where the source image is stored. The op argument specifies a operator that controls how the color for each destination pixel on screen is computed, based on pixel already on screen and the corresponding source pixel in memory. c smiling face animation This animation using c draws a smiling face which appears at random position on screen. See output below the code, it will help you in understanding the code easily. C programming code #include<graphics.h> #include<conio.h> #include<stdlib.h>   main() { int gd = DETECT, gm, area, temp1, temp2, left = 25, top = 75; void *p;   initgraph(&gd,&gm,"C:\\TC\\BGI");   setcolor(YELLOW)...

What is Dynamic Memory Allocation in C++ Program

In the computer world, anything that is processed be it an instruction or any data first needs to be loaded and located in internal memory.  In C++ programs also any data that is processed while executing the program is held in the internal memory.  What is Dynamic Memory Allocation? Dynamic Memory allocation means that the memory that will be used during the program is not known beforehand and is allocated dynamically and on the go. It is allocated during the runtime as and when required by the program. In C++ there are two operators used in dynamic memory allocation  1. New  2. Delete New operator in dynamic memory allocation The new operator in C++ is used to create objects of all types. The new operator will allocate memory of the size of the data type specified in the program.  For Example iptr = new int ;  Storing initial values will allocate needed amount of memory from the free store to hold the value of the specified data-type and store the startin...