Skip to main content

Understanding Macro Functions


A more advanced use of macros is also permitted by the preprocessor. This
involves macros which accept parameters and hand back values. This works
by defining a macro with some dummy parameter, say x. For example: a
macro which is usually defined in one of the standard libraries is abs() which
means the absolute or unsigned value of a number. It is defined below:

#define ABS(x) ((x) < 0) ? -(x) : (x)

The result of this is to give the positive (or unsigned) part of any number
or variable. This would be no problem for a function which could accept
parameters, and it is, in fact, no problem for macros. Macros can also be
made to take parameters. Consider the ABS() example. If a programmer
were to write ABS(4) then the preprocessor would substitute 4 for x. If a
program read ABS(i) then the preprocessor would substitute i for x and so
on. (There is no reason why macros can’t take more than one parameter
too. The programmer just includes two dummy parameters with different
names. See the example listing below.) Notice that this definition uses a
curious operator which belongs to C:

<test> ? <true result> : <false result>




This is like a compact way of writing an ‘if..then..else’ statement, ideal
for macros. But it is also slightly different: it is an expression which returns
a value, where as an ‘if..then..else’ is a statement with no value. Firstly
the test is made. If the test is true then the first statement is carried out,
otherwise the second is carried out. As a memory aid, it could be read as:

if <test> then <true result> else <false result>

(Do not be confused by the above statement which is meant to show what a
programmer might think. It is not a valid C statement.) C can usually pro-
duce much more efficient code for this construction than for a corresponding
if-else statement.

Popular posts from this blog

C++ Program to find the sum, difference, product and quotient of two integers

#include <iostream.h> #include <conio.h> void main() {   clrscr();   int x = 10;   int y = 2;   int sum, difference, product, quotient;   sum = x + y;   difference = x - y;   product = x * y;   quotient = x / y;   cout << "The sum of " << x << " & " << y << " is " << sum << "." << endl;   cout << "The difference of " << x << " & " << "y <<  is " << difference << "." << endl;   cout << "The product of " << x << " & " << y << " is " << product << "." << endl;   cout << "The quotient of " << x << " & " << y << " is " << quotient << "." << endl;   getch(); }

Program of virtual piano

//////////////Tested And Created By C++/////////////////////////////// #include<stdio.h> #include<dos.h> #include<conio.h> #include<stdlib.h> #define SHOW 1 #define HIDE 2 union REGS input,output; class piano {  public:int BIGKEY,MIDKEY,back,border;     piano()//init constructor     {         BIGKEY=15;         MIDKEY=1;         back=7;         border=15;     } }color; void drawpiano(int x,int y); int check_xy(int x,int y); void BOX(int c,int r,int c1,int r1,int col); int initmouse(); void setupscreen(); void pointer(int on); void restrictmouse(int x1,int y1,int x2,int y2); void check_keys(int x,int y); void getmouse(int *button,int *x,int *y); float freq[7] = {130.81, 146.83, 164.81, 174.61,196, 220, 246.94 } ; int n=0,a=4,backcolor=2,exitcode=1; void showbar(int t) {  if(t>65) t=65;  if(t<1) t=1;  textcolor(15);  for(int q=0;q<=t;t++)  {     gotoxy(3+q,4);     cprintf("Û");  } } void main() {  int

Putimage function in c

putimage function outputs a bit image onto the screen. Declaration:- void putimage(int left, int top, void *ptr, int op); putimage puts the bit image previously saved with getimage back onto the screen, with the upper left corner of the image placed at (left, top). ptr points to the area in memory where the source image is stored. The op argument specifies a operator that controls how the color for each destination pixel on screen is computed, based on pixel already on screen and the corresponding source pixel in memory. c smiling face animation This animation using c draws a smiling face which appears at random position on screen. See output below the code, it will help you in understanding the code easily. C programming code #include<graphics.h> #include<conio.h> #include<stdlib.h>   main() { int gd = DETECT, gm, area, temp1, temp2, left = 25, top = 75; void *p;   initgraph(&gd,&gm,"C:\\TC\\BGI");   setcolor(YELLOW);